高中数学常识比较多,需要记忆的要点原理也不少,数学常识结构图可以帮助同学们知道数学大体结构,更高效学习数学。智学网为各位同学整理了《高中一年级数学必学二要点复习笔记》,期望对你的学习有所帮助!
1.高中一年级数学必学二要点复习笔记 篇一
数列的概念
按肯定次序排列的一列数叫做数列,数列中的每个数都叫做数列的项.
从数列概念可以看出,数列的数是按肯定次序排列的,假如组成数列的数相同而排列次序不同,那样它们就不是同一数列,比如数列1,2,3,4,5与数列5,4,3,2,1是不一样的数列.
在数列的概念中并没规定数列中的数需要不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….。
数列的项与它的项数是不一样的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是等于f,而项数是指这个数在数列中的地方序号,它是自变量的值,等于f中的n.
次序对于数列来讲是十分要紧的,有几个相同的数,因为它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质有什么区别.如:2,3,4,5,6这5个数按不一样的次序排列时,就会得到不一样的数列,而{2,3,4,5,6}中元素不论按什么样的次序排列都是同一个集合.
2.高中一年级数学必学二要点复习笔记 篇二
函数的性质:
函数的单调性、奇偶性、周期性
单调性:概念:注意概念是相对与某个具体的区间而言。
断定办法有:概念法
导数法
复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:概念:注意区间是不是关于原点对称,比较f与f的关系。f-f=0f=ff为偶函数;f+f=0f=-ff为奇函数。
辨别办法:概念法,图像法,复合函数法
应用:把函数值进行转化求解。
周期性:概念:若函数f对概念域内的任意x满足:f=f,则T为函数f的周期。
其他:若函数f对概念域内的任意x满足:f=f,则2a为函数f的周期.
应用:求函数值和某个区间上的函数分析式。
3.高中一年级数学必学二要点复习笔记 篇三
证明垂直的办法
可以直接证明它们的夹角为90°;证明其它两个角互余。若是高中生的话,还可以证明两条直线的斜率的乘积等于-1,容易见到的有:等腰三角形的顶角平分线或底边的中线垂直于底边;三角形中一边的中线若等于这边一半,则这一边所对的角是直角;在一个三角形中,若有两个角互余,则第三个角是直角;邻补角的平分线互相垂直。
垂直,是指一条线与另一条线相交并成直角,这两条直线互相垂直。一般用符号“⊥”表示。
设有两个向量a和b,a⊥b的充要条件是a·b=0,即=0。
对于立体几何中的垂直问题,主要涉及到线面垂直问题与面面垂直问题,而要解决有关的问题,其难题是线面垂直的概念及其对断定定理成立的条件的理解;两平面垂直的断定定理及其运用和对二面角有关定义的理解。
①在同一平面内,过一点有且只有一条直线与已知直线垂直。垂直必然会出现90°。
②连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。
③点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
4.高中一年级数学必学二要点复习笔记 篇四
1.函数的奇偶性
若f是偶函数,那样f=f;
若f是奇函数,0在其概念域内,则f=0;
判断函数奇偶性可用概念的等价形式:f±f=0或≠0);
若所给函数的分析式较为复杂,应先化简,再判断其奇偶性;
奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2.复合函数的有关问题
复合函数概念域求法:若已知的概念域为[a,b],其复合函数f[g]的概念域由不等式a≤g≤b解出即可;若已知f[g]的概念域为[a,b],求f的概念域,等于x∈[a,b]时,求g的值域的概念域);研究函数的问题必须要注意概念域优先的原则。
复合函数的单调性由“同增异减”断定;
3.函数图像
证明函数图像的对称性,即证明图像上任意点关于对称中心的对称点仍在图像上;
证明图像C1与C2的对称性,即证明C1上任意点关于对称中心的对称点仍在C2上,反之亦然;
曲线C1:f=0,关于y=x+a的对称曲线C2的方程为f=0=0);
曲线C1:f=0关于点的对称曲线C2方程为:f=0;
若函数y=f对x∈R时,f=f恒成立,则y=f图像关于直线x=a对称,高中数学;
函数y=f与y=f的图像关于直线x=对称;
5.高中一年级数学必学二要点复习笔记 篇五
空间中的垂直问题
(1)线线、面面、线面垂直的概念
①两条异面直线的垂直:假如两条异面直线所成的角是直角,就说这两条异面直线互相垂直。
②线面垂直:假如一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。
③平面和平面垂直:假如两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。
(2)垂直关系的断定和性质定理
①线面垂直断定定理和性质定理
断定定理:假如一条直线和一个平面内的两条相交直线都垂直,那样这条直线垂直这个平面。性质定理:假如两条直线同垂直于一个平面,那样这两条直线平行。
②面面垂直的断定定理和性质定理
断定定理:假如一个平面经过另一个平面的一条垂线,那样这两个平面互相垂直。
性质定理:假如两个平面互相垂直,那样在一个平面内垂直于他们的交线的直线垂直于另一个平面。